Shri Shankaracharya Institute of Professional Management \& Technology
 DEPARTMENT OF CIVIL ENGINEERING
 Class Test - I

Session- July-Dec, 2023 Month-NOV 2023
Sem- $3^{\text {rd }}$ Subject-Mathematics-III Code-B000312(014)
Max Marks: 40
Time Allowed: 2 hrs.
Note: - First question is Compulsory from PART I \& II. Solve any 2 questions from PART I \&II

| Q.N. | Questions | Marks | Levels of
 Bloom's taxonomy | Cos |
| :---: | :--- | :---: | :---: | :---: | :---: |
| Q1 | Form partial differential equation from $\mathrm{z}=\mathrm{y}^{2}+2 \mathrm{f}\left(\frac{1}{x}+\log y\right)$ | $[4]$ | Apply | COI |
| Q2 | Solve $\left(\mathrm{x}^{2}-y^{2}-z^{2}\right) \mathrm{p}+2 \mathrm{xyq}=2 \mathrm{xz}$ | $[8]$ | Apply | COI |
| Q3 | Solve Separation of variable $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$, where $\mathrm{u}(\mathrm{x}, 0)=6 e^{-3 x}$ | $[8]$ | Understanding | CO1 |
| Q4 | Solve $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x \partial y}-6 \frac{\partial^{2} z}{\partial y^{2}}=y \cos x$ | $[8]$ | Understanding | CO1 |

PART - B

Q1	Bessel's formula is most appropriate when p lies between \qquad and Write Bessel's formula.	[4]	Applying	CO2
Q2	From the following table, estimate the number of students who obtained marks between 40 and 45 :	[8]	Understanding	CO 2
Q3		[8]	Understanding	CO 2
$\sim_{\mathrm{Q} 4}$	Apply Bessel's formula to obtain y_{25}, given $y_{20}=2854, y_{24}=3162, y_{28}=$ $3544, y_{32}=3992$.	[8]	Understanding	CO 2

Shri Shankaracharaya Institute of Professional Management \& Technology

Department of Civil Engineering

Class Test-I Session: Nov-Dec 2023 Month- November
Semester-3 ${ }^{\text {rd }}$ Subject-Plane Surveying, Code-B020314 (020)
Time Allowed: 2 hrs Max Marks:40
Note:- Part (A) form each section is compulsory. Attempt any two from B, C and D.

Q. No. Questions \quad Marks \begin{tabular}{c|c|}

\hline | Levelsof |
| :--- |
| Bloom's |
| taxonomy | \& CO's

\hline
\end{tabular}

PartI

A.	What is Levelling and why it is important in survey work?	$[4]$	Understand	$\mathrm{CO1}$
B.	Explain with neat sketch temporary adjustment of a level?	$[8]$	Understand	$\mathrm{CO1}$
C.	What do you mean by "sensitiveness" of bubble tube?	$[8]$	Understand	$\mathrm{CO1}$
D.	On a level the angular value of one division of the bubble tube is 30 sec and the graduation are 2 mm long. Calculate : (i)the radius of curvature of the tube. (ii) Reading on a staff held 100 m away for a shift of bubble 3 division from centre towards the observer, reading with bubble in the centre being 2.540 m.Apply	$\mathrm{CO1}$		

PartII

A.	What is contour and contour interval?	$[4]$	Understand	CO 2
B.	What are the different uses of contour?	$[8]$	Understand	CO 2
C.	What are the characteristics of contours? Explain with neat sketch.	$[8]$	Understand	CO 2
D.	What are the various methods of interpolating contour?	$[8]$	Understand	$\mathrm{CO2}$

Shri Shankaracharya Institute of Professional Management \& Technology Department of Civil Engineering

Class Test - I Session: July - December 2023Month - November Semester - ${ }^{\text {rd }}$ Subject - Introduction to Fluid Mechanics Code -B020312(020) Time Allowed: 2 hrs. Max Marks: 40
Note: - In Part I \& II, Question A is compulsory and attempt any two from B, C \& D.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
Part I				
A.	Explain the properties of fluids density, weight density, specific volume and specific gravity	[4]	Understand	CO 1
B.	The velocity distribution for the flow over a flat plate is given by $u=3 / 4 y-y^{2}$ in which u is the velocity in meter per second at a distance y metre above the plate. Determine the shear stress at $y=$ 0.15 m . Take dynamic viscosity of fluid as 8.6 Poise.	[8]	Apply	COI
C.	The vertical gap 2.2 cm wide of infinite extent contains a fluid of viscosity $2 \mathrm{Ns} / \mathrm{m} 2$ and specific gravity 0.9 . A metallic plate 1.2 mx $1.2 \mathrm{~m} \times 0.2 \mathrm{~cm}$ is to be lifted up with a constant velocity of 0.15 $\mathrm{m} / \mathrm{sec}$, through the gap. If the plate is in the middle of the gap, find the force required. The weight of the plate is 40 N .	[8]	Apply	COI
D.	An open tank contains water up to a depth of 2 m and above it an oil of sp.gr. 0.9 for a depth of 1 m . Find the pressure intensity (i) at the interface of the liquids and (ii) at the bottom of the tank	[8]	Apply	COI
Part II				
A.	Explain the following Steady and unsteady flow ,Uniform and Non-uniform flow, Laminar and turbulent flow	[4]	Understand	CO 2
B.	A 40 cm diameter pipe, conveying water, branches into two pipes of diameters 30 cm and 20 cm respectively. If the velocity in the 40 cm diameter pipe is $3 \mathrm{~m} / \mathrm{s}$. Find the discharge in this pipe. Also determine the velocity in 20 cm pipe if the average velocity in 30 cm diameter pipe is $2 \mathrm{~m} / \mathrm{s}$.	[8]	Apply	CO 2
C.	Derive an expression for continuity equation in 3D.	[8]	Understand	CO2
D.	The Velocity vector in a fluid flow is given $V=x^{2} y i+y^{2} z j-\left(2 x y z+y z^{2}\right) k .$ Find the velocity and acceleration of a fluid particle at $(2,1,3)$.	[8]	Apply	CO 2

Shri Shankaracharya Institute of Professional Management \& Technology
 Department of Civil Engineering

Class Test - I Session: July - Dec, 2023 Month - November Semester - $3^{\text {rd }}$ Subject - Building Material, Code - B020315 (020) Time Allowed: 2 hrsMax Marks: 40
Note: -Attempt all questions. Part (a) from each question is compulsory.Attempt any two from part (b), (c) and (d).

O. Questions	Levels of No.	Marks Bloom's taxonomy

Part- I

(a) Describe the function of ball mills and tube mills in cement manufacturing.
(b) Explain how does the cement set? List out the function of four principle compound responsible for setting action.
(c) Describe in details the modern manufacturing process of ordinary cement.
(d) Briefly explain the following (Attempt any two):
(a) Dry process and wet process
(b) Initial setting time and final setting time of Cement
(c) Compressive strength test

Part- II

(a)	Briefly describethe meant of fineness modulus of aggregate.	$[4]$	Understand	CO 2
(b)	Describe the classification of aggregate on the basis of size using sieve analysis.	$[8]$	Understand	$\mathrm{CO2}$
(c)	Explain the factors affecting Strength and durability of Concrete	$[8]$	Understand	$\mathrm{CO2}$
(d)	Explain any one test of hardened concrete.	$[8]$	Understand	$\mathrm{CO2}$

Shri Shankaracharya Institute of Professional Management \&Technology, Raipur
Department of Civil Engineering
Class Test - I Session; JULY - DEC, 2023 Month -NOVEMBER
Semester - $3^{\text {rd }}$. Subject-Introduction to Solid Mechanics Code-B020313(020)
Time Allowed: 2 hrs. Max Marks: 40
Note: -Part A of each question is compulsory. Attempt any 2 from Part B, C \& D in each question.

$\begin{aligned} & \text { O } \\ & \text { No } \end{aligned}$	Questions	Marks	Levels of Bloom's taxonomy	CO's
Part-I				
A.	Define the term Poisson's Ratio. Write the expression between the three moduli.	[4]	Understand	$\mathrm{CO1}$
B.	The bar shown in Fig. 1.10 is subjected to a tensile load of 50 kN . Find the diameter of the middle portion if the stress is limited to $130 \mathrm{MN} / \mathrm{m} 2$. Also calculate the length of the middle portion if the total elongation of the bar is 0.15 mm . Take $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$.	[8]	Apply	CO 1
C.	A stepped bar with circular cross section and supported at top, hangs vertically under its own weight. Dimensions of bar are shown in figure below. Calculate the Elongation of the bar under its own weight. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and density, $\Upsilon=8 \times 10^{-5}$ $\mathrm{N} / \mathrm{mm}^{2}$	[8]	Apply	CO1
D.	A circular steel bar having three segments is subjected to various forces at different cross section as shown in figure below. Determine the necessary forces to be applied at section C for the equilibrium of the bar. Also, calculate the total elongation of the bar. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$	[8]	Apply	CO1
Part -II				
A.	Define Bending Moment and Shear force.	[4]	Understand	CO 2
B.	A C.I. flat, 300 mm long and of $30 \mathrm{~mm} \times 50 \mathrm{~mm}$ uniform section, is acted uponby the following forces uniformly distributed over the respective cross-section; 25 kN in the direction oflength (tensile); 350 kN in the direction of the width (compressive); and 200 kN in the direction ofthickness (tensile). Calculate the change in volume of the flat. Take $\mathrm{E}=140 \mathrm{GN} / \mathrm{m} 2$, and $\mathrm{m}=4$.	[8]	Apply	CO 1

